

Principal congruence subgroup

and

Modular curve $X_{\Gamma(2)}$

Congruence subgroup $\Gamma(2)$

$$\Gamma(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2} \right\}$$

$$\overline{\Gamma(2)} := \Gamma(2) / \{\pm 1\} \subset PSL_2(\mathbb{Z})$$

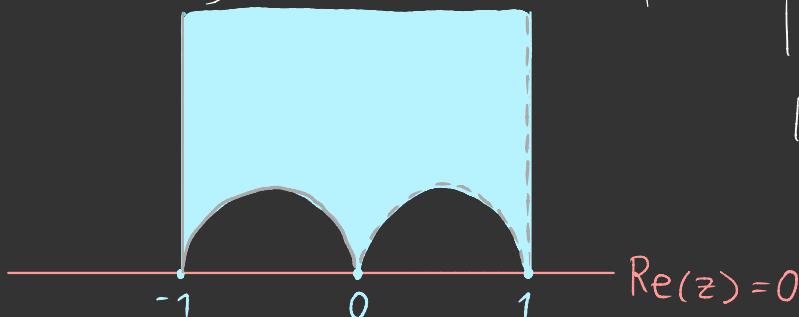
Lemma: $\Gamma(2)$ is a normal subgroup of Γ_1 and $[\Gamma_1 : \Gamma(2)] = 6$.

Theorem:

a) $\overline{\Gamma}(2)$ is freely generated by 2 elements:

$$A := \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B := \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

b) $\mathcal{F}_{\Gamma(2)} := \{ z \in \mathbb{H} \mid \begin{aligned} \operatorname{Re}(z) &\in [-1, 1] \\ |z + \frac{1}{2}| &\geq \frac{1}{2} \\ |z - \frac{1}{2}| &> \frac{1}{2} \end{aligned}\}$



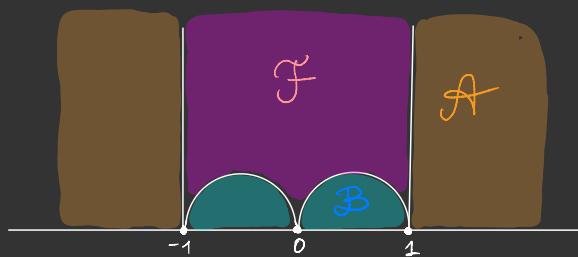
$\mathcal{F}_{\Gamma(2)}$ is a fundamental domain of the action of $\Gamma(2)$ on \mathbb{H} .

Proof:

Step 1: Show that there are no relations between A & B

Let $F(\alpha, \beta)$ be the free group with generators α & β

We will show that the map $\pi: F(\alpha, \beta) \rightarrow \mathbb{F}(2)$
given by $\pi: \alpha \mapsto \bar{A}, \beta \mapsto \bar{B}$ is injective.



Consider the following partition of \mathbb{H}

$$\mathbb{H} = F \sqcup B \sqcup A$$

Claim: ① If $z \in F \cup B$ then

$$A^k z \in A \text{ for all } k \in \mathbb{Z} \setminus \{0\}$$

② If $z \in F \cup A$ then

$$B^k z \in B \text{ for all } k \in \mathbb{Z} \setminus \{0\}$$

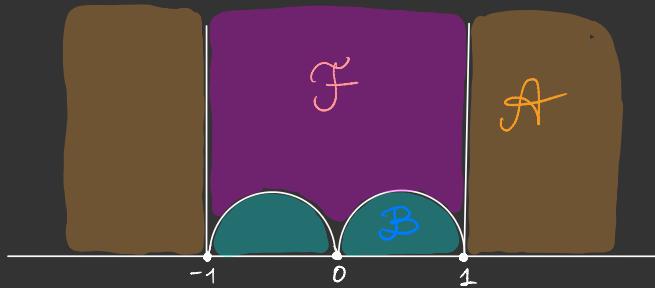
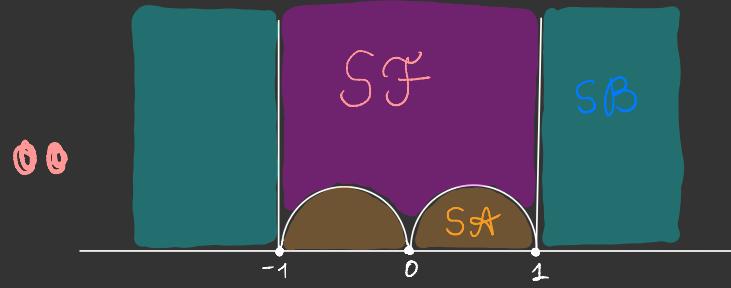
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$SAS^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$$

$$= - \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = -B^{-1}$$



Let m be an element of $F(\alpha, \beta)$

$m = \alpha^{k_1} \cdot \beta^{\ell_1} \cdot \alpha^{k_2} \cdot \beta^{\ell_2} \cdots \alpha^{k_s} \cdot \beta^{\ell_s}$ \leftarrow reduced word
 $(k_1 \in \mathbb{Z}, \ell_1, k_2, \ell_2, \dots, k_s \in \mathbb{Z} \setminus \{0\}, \ell_s \in \mathbb{Z})$

Claim 2: Set $M := \pi(m)$. Let $z \in F$.

If $k_1 \neq 0$ then $Mz \in A$

If $k_1 = 0$ and $\ell_1 \neq 0$ then $Mz \in B$

We prove this claim by induction on s .

This claim implies the injectivity of π .

Claim 2: Let $M = A^{k_1} B^{l_1} A^{k_2} B^{l_2} \cdots A^{k_s} B^{l_s}$ and $z \in \mathcal{F}$

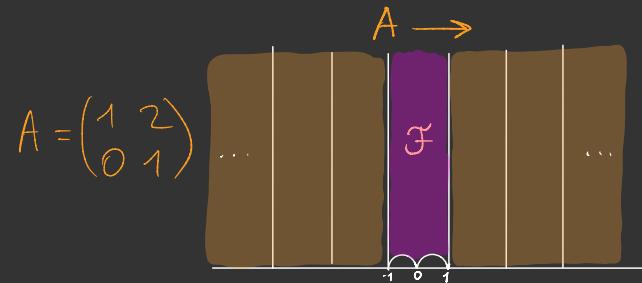
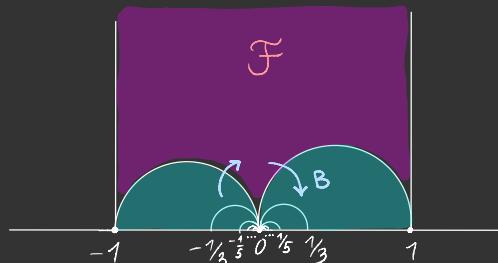
If $k_1 \neq 0$ then $Mz \in \mathcal{A}$

If $k_1 = 0$ and $l_1 \neq 0$ then $Mz \in \mathcal{B}$

We prove this claim by induction on $\ell(M)$, where

$$\ell(M) := \begin{cases} 2s & \text{if } k_1, l_s \neq 0 \\ 2s-1 & \text{if } k_1 = 0 \text{ and } l_s \neq 0 \\ 2s-1 & \text{if } k_1 \neq 0 \text{ and } l_s = 0 \\ 2s-2 & \text{if } k_1, l_s = 0 \end{cases}$$

Base of induction: $\ell(M) = 1$. Then $M = A^{k_1}$ or $M = B^{l_1}$



$$B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$\frac{1}{2n-1} \xrightarrow{B} \frac{\frac{1}{2n-1}}{2 \cdot \frac{1}{2n-1} + 1} = \frac{1}{2 + 2n-1} = \frac{1}{2n+1}$$

Step of induction: Claim 1

We have proven that the map

$$\pi : F(\alpha, \beta) \rightarrow \overline{F}(2) \quad \text{is injective}$$

Step 2:

What about surjectivity of π ?

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$.

We need to show: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \pm A^{k_1} B^{l_1} \dots A^{k_s} B^{l_s}$

for some $k_1, l_1, \dots, k_s, l_s \in \mathbb{Z}$.

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+2c & b+2d \\ c & d \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c+2a & d+2b \end{pmatrix}$$

Consider the following algorithm:

Input: $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$

1. If $|a| \geq |c|$ and $c \neq 0$

There exists an integer k such that

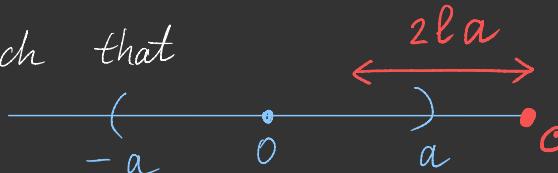
$$|a + 2kc| < |c|$$

$$M \rightarrow \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}^k M ;$$

2. If $|a| < |c|$

There exists an integer ℓ such that

$$|c + 2a\ell| < |a|$$



$$M \rightarrow \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}^\ell \cdot M ;$$

3. If $c = 0$ then $M = \pm \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}^k$ for some $k \in \mathbb{Z}$

$$M \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} ; \text{ finish algorithm}$$

Claim: The algorithm terminates for all $M \in \overline{\Gamma(z)}$ after a finite number of steps.

Indeed, $|a| + |c|$ decreases after each step.

This proves that $\pi: F(\alpha, \beta) \rightarrow \overline{\Gamma(z)}$ is surjective.
This finishes the proof of part a).

Proof of part b)

Claim 2 implies that for all $z \in h$ at most one $\Gamma(2)$ -translate of z is contained in \mathcal{F} .

It remains to show that for all $z \in h$ there exists $M \in \Gamma(2)$ such that $Mz \in \mathcal{F}$.

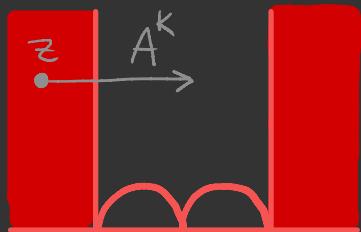
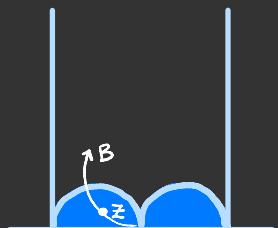
Consider the following algorithm:

Input $z \in h$

1. If $z \in A$
then there exists $k \in \mathbb{Z}$ such that $A^k z \in \mathcal{F} \cup \mathcal{B}$
 $z \rightarrow A^k z$

2. If $z \in \mathcal{B}$
then there exists $\ell \in \mathbb{Z}$ such that $B^\ell z \in \mathcal{F} \cup A$
 $z \rightarrow B^\ell z$

3. If $z \in \mathcal{F}$ return z



Claim: Let $z_0, z_1, \dots, z_n, \dots$ be the sequence of values of variable z in the algorithm above. Then

$$\textcircled{a} \quad \operatorname{Im}(z_{n+1}) \geq \operatorname{Im}(z_n) \quad \operatorname{Im}(A^k z) = \operatorname{Im}(z)$$

$$\textcircled{b} \quad \operatorname{Im}\left(-\frac{1}{z_{n+1}}\right) \geq \operatorname{Im}\left(-\frac{1}{z_n}\right) \quad \operatorname{Im}\left(-\frac{1}{B^k z}\right) = \operatorname{Im}\left(-\frac{1}{z}\right)$$

At each step one of this inequalities is strict.

Exercise: Let $z \in \mathbb{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$.

$$\text{Then } \operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$$

Claim: Algorithm terminates after a finite number of steps.

$$\text{Suppose that } z_n = \frac{a_n z + b_n}{c_n z + d_n}.$$

$$\textcircled{a} \quad \operatorname{Im}\left(\frac{a_n z + b_n}{c_n z + d_n}\right) \geq \operatorname{Im}(z) \Rightarrow |c_n z + d_n|^2 \leq 1 \Rightarrow \text{finite number of } (c_n, d_n)$$

$$\textcircled{b} \quad \operatorname{Im}\left(\frac{-c_n z - d_n}{a_n z + b_n}\right) \geq \operatorname{Im}(z) \Rightarrow |a_n z + b_n|^2 \leq 1 \Rightarrow \text{finite number of } (a_n, b_n)$$

This finishes the proof of the theorem.

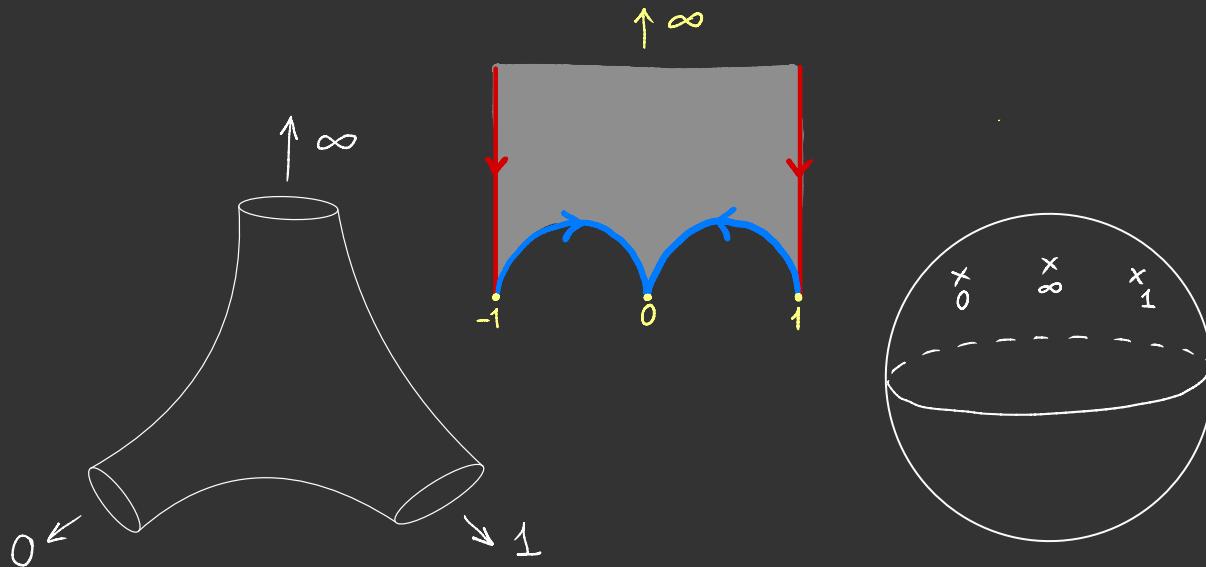
Modular curve

Definition: $Y_{\Gamma(2)} := \overline{\Gamma(2)} \setminus \mathbb{H}$

$X_{\Gamma(2)}$

topological space
metric space
complex manifold

Riemann surface (complex variety of dimension 1)



Definition: Let $\Gamma \subset PSL_2(\mathbb{Z})$ be a congruence subgroup.

A point $z \in \mathbb{H}$ is an **elliptic point of Γ** if the stabilizer $Stab(\Gamma, z) := \{\gamma \in \Gamma \mid \gamma z = z\}$ is non-trivial.

Lemma: $\Gamma(2)$ has no elliptic points.

Proof: Suppose that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$ and $z \in \mathbb{H}$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = z \quad \nexists \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\frac{az+b}{cz+d} = z \quad c\bar{z}^2 + (d-a)z - b = 0$$

has complex roots

$$(d-a)^2 - 4bc = a^2 + d^2 - 2ad - 4bc = (a+d)^2 - 4 < 0$$

This condition implies that $|a+d| < 2$

a and d are odd $\Rightarrow a+d$ is even

Therefore $a+d=0$.

Thus $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 2b' \\ 2c' - a & \end{pmatrix}$ for some $c', d' \in \mathbb{Z}$.

Since $ad - bc = 1$ we have $-a^2 - 4b'c' = 1$ (▲)

Since a is odd, then $-a^2 \equiv 1 \pmod{4}$

This contradicts (▲) and finishes the proof ▀

Definition: A cusp of a congruence subgroup Γ is a Γ -equivalence class of $\mathbb{Q} \cup \{\infty\}$.

Lemma: $\Gamma(2)$ has 3 cusps: 1, 0, ∞

some thoughts about the proof:

$$\mathbb{Q} \cup \{\infty\} \simeq \mathbb{P}_1(\mathbb{Q}) = \{[m:n] \mid (m,n) \in \mathbb{Z}^2 \text{ and } \gcd(m,n) = 1\}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_1, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} [m:n] = [am + b : cm + dn]$$

$$\pi: \mathbb{P}_1(\mathbb{Q}) \rightarrow \mathbb{P}_1(\mathbb{Z}/2\mathbb{Z}) \quad \begin{aligned} (m,n) = 1, \\ [m:n] \mapsto [m \bmod 2, n \bmod 2] \end{aligned}$$

$$\pi(M\varpi) = \pi(\varpi) \quad \text{for all } M \in \Gamma(2) \text{ and } \varpi \in \mathbb{P}_1(\mathbb{Q})$$

$$\mathbb{P}_1(\mathbb{Z}/2\mathbb{Z}) = \{[0:1], \underset{0}{\infty}, \underset{1}{[1:1]}\}$$

Modular lambda function

$$\theta_{00}(z) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 z}$$

$$\theta_{01}(z) = \sum_{n \in \mathbb{Z}} (-1)^n e^{\pi i n^2 z}$$

$$\theta_{10}(z) = \sum_{n \in \mathbb{Z}} e^{\pi i (n + \frac{1}{2})^2 z}$$

Definition:

$$\text{The function } \lambda(z) := \frac{\theta_{10}^4(z)}{\theta_{00}^4(z)}$$

is called the modular Lambda function

Theorem:

a) For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2)$ and $z \in \mathbb{H}$ we have

$$\lambda\left(\frac{az+b}{cz+d}\right) = \lambda(z)$$

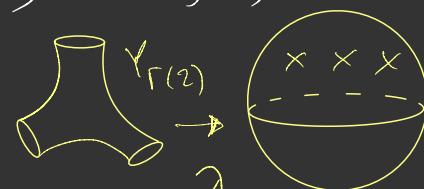
b) λ is a holomorphic bijection between $\Gamma(2) \setminus \mathbb{H}$ and $\mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}$.

Proof: By exercise 5

$$\theta_{00}^4\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 \theta_{00}^4(z)$$

$$\theta_{10}^4\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 \theta_{10}^4(z)$$

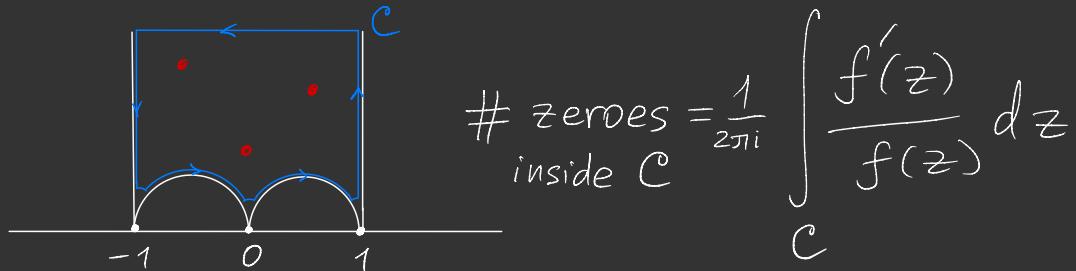
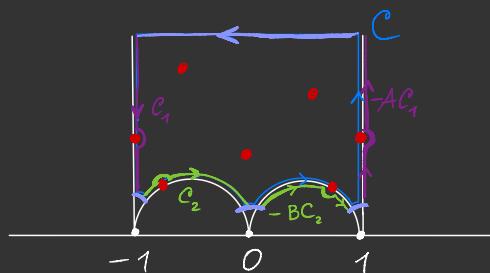
This implies part a).



Let $c \in \mathbb{C} \setminus \{0, 1\}$

Set $f(z) := \lambda(z) - c$

We will compute the number of zeroes of f in a fundamental domain of $\Gamma(2) \backslash \mathbb{H}$.



$$f(Mz) = f(z) \quad \text{for all } M \in \Gamma(2)$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) \quad z = \frac{a\tau + b}{c\tau + d} \Rightarrow dz = (c\tau + d)^{-2} d\tau$$

$$f\left(\frac{\tau}{2\tau+1}\right) = f(\tau)$$

$$(2\tau+1)^2 f'\left(\frac{\tau}{2\tau+1}\right) = f'(\tau)$$

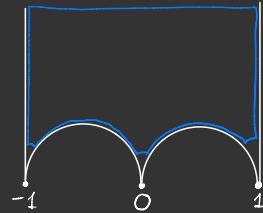
If f transforms like a modular function
then

f' transforms like a weight 2 modular form

$$\int_{C_2} \frac{f'(\tau)}{f(\tau)} d\tau - \int_{BC_2} \frac{f'(\tau)}{f(\tau)} d\tau = \int_{C_2} \left(\frac{f'(\tau)}{f(\tau)} d\tau - \frac{f'\left(\frac{\tau}{2\tau+1}\right)}{f\left(\frac{\tau}{2\tau+1}\right)} (2\tau+1)^{-2} d\tau \right) = 0$$

$$f(\tau) = \sum_{n=n_0}^{\infty} c_f(n) e^{\pi i n \tau}, \quad c_f(n_0) \neq 0, \quad n_0 \in \mathbb{Z}$$

$$\int_{-1+iT}^{1+iT} \frac{f'(\tau)}{f(\tau)} d\tau \xrightarrow{\approx} \text{as } T \rightarrow \infty$$



$$\int_{-1+iT}^{1+iT} \frac{\pi i n_0 e^{\pi i n_0 \tau}}{e^{\pi i n_0 \tau}} d\tau = 2\pi i n_0 = 2\pi i \text{ord}_{\infty}(f)$$

for $c \notin \{0, 1\}$

$$\lim_{z \rightarrow \infty} \lambda(z) = 0 \quad \text{ord}_{\infty}(\lambda - c) = 0$$

$$\lim_{z \rightarrow 0} \lambda(z) = 1 \quad \text{ord}_0(\lambda - c) = 0$$

$$\lim_{z \rightarrow 1} \lambda(z) = \infty \quad \text{ord}_1(\lambda - c) = -1$$

$\Rightarrow \lambda - c$
has exactly
one zero
in a fundamental
domain.

Definition: λ -function is a Hauptmodul for $\Gamma(2)$

Definition: A congruence subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is a **congruence subgroup of genus 0**

if $\Gamma \backslash \mathbb{H}$ is homeomorphic to $\mathbb{P}^1(\mathbb{C}) \setminus \left\{ \begin{array}{l} \text{finite} \\ \text{number} \\ \text{of points} \end{array} \right\}$
iso as Riemann surfaces

A holomorphic function $f: \Gamma \backslash \mathbb{H} \rightarrow \mathbb{P}^1(\mathbb{C}) \setminus \left\{ \begin{array}{l} \text{finite} \\ \text{number} \\ \text{of points} \end{array} \right\}$
 f is 1:1

then f is a **Hauptmodul** for Γ

Remark: λ -function is a weakly holomorphic modular form of weight 0 for $\Gamma(2)$.

$$\lambda \in M_0^!(\Gamma(2)).$$

$$\dim M_0^!(\Gamma(2)) = \infty.$$

